
978-1-5386-9279-0/19/$31.00 ©2019 IEEE

Video Streaming using Scalable Video Coding over

Opportunistic Networks

Abhishek Thakur
Institute of Development and Research

in Banking Technologies
Hyderabad, India

abhishekt@idrbt.ac.in

Vaibhav Balloli
Dept. of Electrical and Electronics

Engineering
BITS Pilani Hyderabad Campus

Hyderabad, India
balloli.vb@gmail.com

Arnav Dhamija

Dept. of Computer Science
BITS Pilani Hyderabad Campus

Hyderabad, India
arnav.dhamija@gmail.com

Abstract—Opportunistic networks provide delay-tolerant

communication in the absence of network infrastructure. Video

streaming is challenging for such networks since real-time

feedback is not available and the network is highly distributed and

disconnected. This paper proposes an algorithm to adaptively

transfer video over such networks according to available network

resources. Scalable Video Coding is used to ensure that video of

minimal quality gets delivered. If resources allow, the algorithm

transmits the video at higher quality. We present a simple

implementation for Android devices as a proof-of-concept. For

evaluating the performance impact of variants in the algorithm,

we also present the simulation results.

Keywords—user-generated content, video streaming, scalable

encoding, opportunistic networks, delay and disruption tolerant

networks

I. INTRODUCTION

Low node density and high node mobility can cause
partitions in ad-hoc networks. Delay and disruption tolerant
networks (DTN’s) [1] use the concept of store-carry-forward to
provide communication between nodes. Opportunistic
Networks (OppNets) are a sub-category of DTN where the node
contact patterns are not predictable. Such networks rely on the
creation of multiple replicas of each payload. Generally, higher
number of replicas increase overheads while reducing delay and
increasing the delivery rate.

Note that opportunistic communication in the last hop or
peer-to-peer mesh networks for video transmission like [2]
differs from our work since they either distribute prior generated
content or have simultaneous connectivity between most nodes.
Our work primarily assumes a delay and disruption tolerant
network, with delays of the order of hours between source and
destination, with no long-term contacts between nodes.

Continuous video streaming over such networks is
challenging since it is difficult to predict the capability of the
network. Underestimating available network resources can
cause under-utilization, while overestimation can lead to
congestion, increased delays and the dropping of payloads on
intermediate nodes.

In this work, we use the Scalable Video Coding (SVC) [3]
codec and adapt the simple Spray-And-Wait (SNW) [4] routing

protocol to implement adaptive video transmission. Simulation
results show that the proposed scheme provides significantly
better results than non-adaptive transmission. Regarding prior
work, Klaghstan [5] has attempted SVC transmission in
OppNets but studied only one segment of video transmission.
Moreover [5] did not have any real-world implementation. Our
work uses information from prior segments, to adapt the quality
of video for subsequent transmissions. We also present a proof-
of-concept for the same with an Android application built on top
of Nearby Connections API.

In section II we provide an overview of SVC and DTN
routing. Section III provides the algorithm details for adaptive
transmission by the video source. Section IV provides
simulation results. Section V provides the details of proof-of-
concept for video streaming using Android devices. Section VI
concludes the paper and also discusses the proposed future
work.

II. BACKGROUND DETAILS

To stream video content over OppNets, the captured raw
video needs to be compressed and packaged into payloads.
Intermediate nodes relay these payloads to the destination. We
can use different DTN routing approaches to relay the payload.
In this work, we use SNW routing as it allows setting the
maximum replica count of a payload at the source.

The primary contribution of our work is continuous adaptive
streaming of video over OppNets, using end-to-end mechanisms
only. Similar to additive-increase and multiplicative decrease of
TCP, only the source and destination nodes implement the
adaptation, without requiring any changes on intermediate
nodes.

A. Scalable video coding and payload generation

In reliable networks with round-trip delays below a second,
the source can get feedback from the receiver and adapt its
encoder settings to target an optimal bit-rate. For OppNets, the
acknowledgment may come after several hours of delay, or it
may be lost entirely. Hence, we cannot utilize such schemes.
Scalable Video Coding (SVC) and Multi-Description Coding
(MDC)[6] provide an alternative for such scenarios. The source
can create payloads of varying bit-rate and quality. In MDC, the
payloads carry mutually overlapping information for

redundancy. This information overlap cannot be controlled
externally, making it unsuitable for adaptive transmission. For
our work, SVC is a better fit since it allows external redundancy
control. An in-depth discussion of SVC is out of the scope of
this paper and [3] provides a much more comprehensive
overview of the same.

Payload can be mapped at each network adaptation layer unit
(NALU) or SVC layers of video chunks of few seconds each can
be mapped to payload. NALU level mapping of payload requires
the network elements to be aware of the media flow[5]. In our
work, we do not expect any support from intermediate nodes,
hence the source (SVC encoder) compresses a chunk of captured
video (of a few seconds each) into a base layer (BL) and multiple
enhancement layers (EL). Only after receiving the base layer,
the content from the enhancement layer can be used to improve
the quality of the video further. The receiver necessarily requires
the BL to decode the video. On receiving subsequent
enhancement layers, the decoder can increase resolution,
improve frame rate, increase colour depth and reduce
quantization loss. For a particular chunk, if an intermediate EL
is missing, higher ELs cannot be decoded. Let us consider the
example, where the source encodes and transmits a segment of
video using SVC layers as BL and three ELs (labelled as EL1,
EL2, and EL3). If BL is not received, the complete segment
cannot be decoded. In another instance, if only BL, EL2 and EL3
are received, the decoder can only provide the output to the
quality carried in BL. In this case, EL1 is missing, and hence,
we cannot use EL2 and EL3.

B. Routing in OppNets

Reference [7] provides a detailed description of various
routing protocols for routing in Delay Tolerant Networks. At
one extreme, we have direct-delivery where the source should
meet the destination to deliver the payload. Direct-delivery has
large delays, and the network may suffer from delivery failures.
Nevertheless, this approach has the lowest network utilization
and the least demand on storage space. On the other extreme, we
have the epidemic routing protocol where the payload is shared
with all nodes. When the network is lightly loaded, epidemic
routing will provide the best performance on delivery rates with
minimal delay. However, epidemic routing has the highest
network resource utilization as it shares a copy with all the nodes
in the network. It also has high overheads on storage of bundles.
Network congestion may occur when large or frequently
generated payloads added.

Spray-and-Wait [4] provides a balance between direct
delivery and epidemic routing. The source node can set the max
upper bound to the number of replicas (L) that can be created. If
L equals one, SNW behaves similarly to the direct delivery
protocol. If the initial value of L is more than the number of
nodes, it behaves similarly to epidemic routing. The Spray phase
is the initial phase where the payload is relayed to the other
nodes. In this phase, the copy counts are adjusted on both nodes
when a payload is transferred. For Binary-SNW routing protocol
used in this work, the relaying node drops the copy count of a
payload by half after transferring it. A payload on a node enters
the Wait phase when it has a copy count of one. In the Wait
phase, the payload cannot be relayed to any node except for the
destination.

III. ADAPTIVE VIDEO TRANSMISSION IN OPPNETS

In the beginning, the source transmits all the SVC layers.
The BL is given the highest value for L compared to all other
layers. Similar to Klaghstan [5], higher enhancement layers have
a lower value of L. The destination sends acknowledgments for
all the payloads that it receives.

In our experiments, we have first implemented temporal
scaling of five layers, before bringing in spatial and quality
scaling. This implies we have first layer as BL, followed by
EL1-EL4 as temporal enhancements. EL5-EL9 improve the
spatial quality at different temporal layers. For creating a video
of consistent spatial quality, we should have either all of the
layers between EL5 to EL9 or none of them [5]. We have also
experimented with other sequence of SVC layers (e.g. BL
followed by EL1 at higher resolution, and EL2-EL6 bringing in
temporal scalability). Because of space constraints, we are only
discussing adaptation for ten layers BL, EL1, EL2, EL3, EL4
and EL5-EL9 scenario.

Algorithm 1 implements adaptive transmission. Delay-
Target (DT) is a deployment specific setting. It is the intended
delay from the time of the capture of a video segment at the
source, to the time for decode and playback of the segment at
the destination. Burst-Gap is the time gap between each segment
capture. Note that AdaptiveRecordAndTransmit is invoked at
the source for each segment. MxL is the maximum number of
SVC layers that the encoder produces.

For instance, in a sparse network with an average delivery
delay is of 8 hours, DT may be set to 12-24 hours and burst-gap
to 5 minutes. Since the network reacts with a significant lag, we
also experimented by changing dtMult in line 3 of Algorithm 1
for values of 1, 2 and 4 during simulation runs. Values for
Additive Increase (AI) as 0.003 and Multiplicative Decrease
(MD) as 0.01 are determined through simulations.

SVCEncodeAndTransmit encodes the raw video and only
transmits the SVC layers up to numLyrs2Send. Each layer is
transmitted as a separate payload. The time-to-live for each

Algorithm 1: AdaptiveRecordAndTransmit

Initialize: burstId←0, MxL←10, factor ←1

1. begin

2. burstId← burstId +1

3. dTAwayId ← burstId – dtMult × DT/burstGap

4. if (ackReceived(dTAwayId)) then

5. factor ← factor + numAcksAddIncr

6. else

7. factor ← factor × MultDecr

8. if (factor > 1) then

9. factor ← 1

10. if (factor < 1/MxL) then

11. factor ← 1/MxL

12. numLyrs2Send← MxL * factor

13. if (numLyrs2Send > 5 AND numLyrs2Send < 10) then

14. numLyrs2Send ←5

15. SVCEncodeAndTransmit(numLyrs2Send)

16. end

payload is set to twice the delay-target to ensure that the
payloads do not continue to occupy buffer forever.

IV. SIMULATION RESULTS

Opportunistic Network Environment (ONE) [8] was used to
simulate the video transmission. We simulated fifty pedestrian
nodes based on the Random Waypoint [8] movement model of

ONE. DT is set to three hours and burst-gap to 5 minutes. To
simulate the specifications of a smartphone’s Bluetooth radio,
we used a radio range of 10m with a network speed of 250
KB/sec and a buffer space of 50 MB in these simulations. The
video source had 500 MB buffer space. The time-to-live for
payloads is set to six hours and payload size is determined using
SHM (12.4 from https://hevc.hhi.fraunhofer.de/svn/).

Fig. 1 Simulation results for dtMult as two

Fig. 2 Simulation results for varying dtMult

Multiplicative Decrease

Additive Increase

Multiplicative Decrease

Additive Increase

Multiplicative Decrease

Additive Increase Multiplicative Decrease
Additive Increase

(a) (b)

(c) (d)

Multiplicative Decrease

Additive Increase

(a) (b) (c)

Multiplicative Decrease

Additive Increase

Multiplicative Decrease

Additive Increase

Fig. 3 Enhancement layers for dtMult as two

The video payload used in the simulation is compressed
using SHM (ver. 12.4) into payloads corresponding to BL, EL1,
EL2, till EL9 for a total of ten payloads for each video segment
captured. The simulation involved five runs with different seeds
to ensure that there is no specific bias in the simulation.

Fig. 1 presents the results for various metrics as
multiplicative decrease and additive increase values are varied
for adaptation, using acknowledgment for payload generated
two DT ago. For all the metrics, it is observed that the MD
values above 0.003 and AI values below 0.01 provide relatively
good results. Fig. 1 (a) shows that count of delivered payloads
has two pronounce peaks at AI=0.003 / MD=0.01 and AI=0.001
/ MD = 0.003 respectively. The delays (Fig. 1 (c)) and
percentage of delivered payloads (Fig. 1 (d)) have best values
for MD greater than 0.003 and AI lower than 0.003. In this range
the overheads peak (Fig. 1 (b)). Despite the high overheads,
these results show that AI around 0.003 and MD as 0.01 and its
vicinity are good area to operate in these scenarios.

Note that when SVC is not used only 82 segments of video
(of the 1000 that were transmitted) reached the destination. For
low values of MD, SVC adaptation is poorer than that of non-
SVC transmission. As MD value increases to 0.003 and higher,
adaptive transmission does better than non-SVC transmission.
Detailed analysis showed that at MD of 0.3, almost 600 bursts
are decoded, though most of them are at base layer.

Fig. 2 a-c shows the number of delivered bursts with dtMult
of one, two and four. It shows that for the simulation scenario,
dtMult of four (peak of 882) does not provide any appreciably
improvement when compared with dtMult of two (peak of 885).
dtMult of one had a significantly poor result (peak of 728). The
best result of dtMult as two corresponds to round trip time for
the communication. The mobility model is synthetic in nature
with nodes randomly walking along predetermined routes. The
randomness brings in symmetry for round-trip time
computation.

Fig. 3 a-c shows the first three enhancement layers for
dtMult as two. The peaks for first enhancement layer
corresponds to 736 segments of video, second enhancement

layer as 553 segments and third enhancement layer as 400
segments. These values are gain for AI as 0.003 and MD as
0.03/0.01.

Note that the simulation matches with a disaster response
scenario where the activity is continued on a 24x7 basis. In case
other mobility model like a working day scenario or traces from
real world are used, we observe that the dtMult values closer to
twenty-four hours provide the best results. For brevity, this
discussion is not included in the current work.

V. PROOF OF CONCEPT

VECTORS [9], an app developed by the author’s team in the
past that creates a DTN on Android devices is extended for this
work. Prior release implemented the video capture and encoding
logic to create the payload using an SVC encoding library,
SHM, on Linux based machines. SHM is cross-compiled to run
on Android as a native application that generates a total of 10
spatial and temporal layers for the payload. When compared to
[9], present work simplifies the adaptation logic and runs
entirely on Android devices, eliminating the use of Linux
computers.

Fig. 4 Screen capture for the destination node

Multiplicative Decrease

Additive Increase

(a) (b) (c)

Multiplicative Decrease

Additive Increase

Multiplicative Decrease

Additive Increase

Fig. 5 Screen capture for the source node

To simulate a construction site with no infrastructural
support scenario, an experimental deployment was set up on a
construction site in BITS Pilani, Hyderabad Campus consisting
of four Android devices. One device was kept static, acting as
the source node to record the area of construction and the
destination node was placed at the site-management office, both
of which were running the OVS-SVC app. First device captured
video and generated the payload. The second device, received
the payload and tabulated the received payload statistics. The
construction site employees carried the remaining two devices
running VECTORS [9] that relayed the payload. Since the
employees at the construction site do not work in the nights, we
used DT as 12 hours and dtMult of 2. TTL was set to 24 hours.

Fig. 4 shows the screenshots of the OVS-SVC app for the
destination, and Fig. 5 for the source. L0T1 in Fig. 4 is the
equivalent of the BL in the payload generated.

VI. CONCLUSION AND FUTURE WORK

Through simulations we experimented with AIMD based
adaptation with varying periods to check for acknowledgments.
As compared to non-adaptive and non-SVC based
transmissions, Adaptive SVC provides significant
improvements with correct choice of AI and MD values. The
decodable bursts were found to be best when acknowledgement
for payloads generated with twice the delay-target are
considered. In future, we plan to experiment with other
adaptation algorithms and different mobility scenarios,
including real-world traces. We are also extending this work to
measure fairness for multiple such video streams. Priority of
video streams is another area to be explored.

We also demonstrated the adaptive streaming of video
chunks using scalable video coding. As compared to our prior
work (VECTORS) which utilized both Linux computers and
Android devices, this solution only utilizes Android devices.
Since Android devices are much more affordable and portable,
our work would make opportunistic video streaming possible for
a greater number of applications.

As SHM is a software encoder, the present system can only
transmit 30-second videos at four frames per second. This is
compressed into a set of temporal enhancement layers followed
by spatial enhancement layers. Future extension of this work
will explore hardware-compression and dynamic adaptation
using variable frame rates. The team also intends to create an
Android application ecosystem for deploying such apps to
domain-specific requirements – e.g., event management,
policing, disaster response, wildlife monitoring, etc.

REFERENCES

[1] Fall, Kevin. "A delay-tolerant network architecture for challenged

internets." In Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications,
pp. 27-34. ACM, 2003.

[2] Mavromoustakis, Constandinos X., et al. "On the perceived quality
evaluation of opportunistic mobile P2P scalable video
streaming." Wireless Communications and Mobile Computing
Conference (IWCMC), 2015 International. IEEE, 2015.

[3] Boyce, Jill M., Yan Ye, Jianle Chen, and Adarsh K. Ramasubramonian.
"Overview of SHVC: Scalable extensions of the high efficiency video
coding standard." IEEE Transactions on Circuits and Systems for Video
Technology26, no. 1 (2016): 20-34.

[4] Spyropoulos, Thrasyvoulos, Konstantinos Psounis, and Cauligi S.
Raghavendra. "Spray and wait: an efficient routing scheme for
intermittently connected mobile networks." In Proceedings of the 2005
ACM SIGCOMM workshop on Delay-tolerant networking, pp. 252-259.
ACM, 2005.

[5] Klaghstan, Merza. "Multimedia data dissemination in opportunistic
systems." PhD diss., Université de Lyon, 2016.

[6] Kazemi, Mohammad, Shervin Shirmohammadi, and Khosrow Haj
Sadeghi. "A review of multiple description coding techniques for error-
resilient video delivery." Multimedia Systems 20, no. 3 (2014): 283-309.

[7] Cao, Yue, and Zhili Sun. "Routing in delay/disruption tolerant networks:
A taxonomy, survey and challenges." IEEE Communications surveys &
tutorials 15, no. 2 (2013): 654-677.

[8] Keränen, Ari, Jörg Ott, and Teemu Kärkkäinen. "The ONE simulator for
DTN protocol evaluation." In Proceedings of the 2nd international
conference on simulation tools and techniques, p. 55. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2009.

[9] Thakur, Abhishek, Arnav Dhamija, Tejeshwar Reddy G “VECTORS –
Video communication through opportunistic relays and scalable video
coding” SoftwareX volume 9: p.55-60.

