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Abstract—Opportunistic networks provide delay-tolerant 

communication in the absence of network infrastructure. Video 

streaming is challenging for such networks since real-time 

feedback is not available and the network is highly distributed and 

disconnected. This paper proposes an algorithm to adaptively 

transfer video over such networks according to available network 

resources. Scalable Video Coding is used to ensure that video of 

minimal quality gets delivered. If resources allow, the algorithm 

transmits the video at higher quality. We present a simple 

implementation for Android devices as a proof-of-concept. For 

evaluating the performance impact of variants in the algorithm, 

we also present the simulation results. 
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I. INTRODUCTION  

Low node density and high node mobility can cause 
partitions in ad-hoc networks. Delay and disruption tolerant 
networks (DTN’s) [1] use the concept of store-carry-forward to 
provide communication between nodes. Opportunistic 
Networks (OppNets) are a sub-category of DTN where the node 
contact patterns are not predictable. Such networks rely on the 
creation of multiple replicas of each payload. Generally, higher 
number of replicas increase overheads while reducing delay and 
increasing the delivery rate. 

Note that opportunistic communication in the last hop or 
peer-to-peer mesh networks for video transmission like [2] 
differs from our work since they either distribute prior generated 
content or have simultaneous connectivity between most nodes. 
Our work primarily assumes a delay and disruption tolerant 
network, with delays of the order of hours between source and 
destination, with no long-term contacts between nodes. 

Continuous video streaming over such networks is 
challenging since it is difficult to predict the capability of the 
network. Underestimating available network resources can 
cause under-utilization, while overestimation can lead to 
congestion, increased delays and the dropping of payloads on 
intermediate nodes. 

In this work, we use the Scalable Video Coding (SVC) [3] 
codec and adapt the simple Spray-And-Wait (SNW) [4] routing 

protocol to implement adaptive video transmission. Simulation 
results show that the proposed scheme provides significantly 
better results than non-adaptive transmission. Regarding prior 
work, Klaghstan [5] has attempted SVC transmission in 
OppNets but studied only one segment of video transmission. 
Moreover [5] did not have any real-world implementation. Our 
work uses information from prior segments, to adapt the quality 
of video for subsequent transmissions. We also present a proof-
of-concept for the same with an Android application built on top 
of Nearby Connections API. 

In section II we provide an overview of SVC and DTN 
routing. Section III provides the algorithm details for adaptive 
transmission by the video source. Section IV provides 
simulation results. Section V provides the details of proof-of-
concept for video streaming using Android devices. Section VI 
concludes the paper and also discusses the proposed future 
work. 

II. BACKGROUND DETAILS 

To stream video content over OppNets, the captured raw 
video needs to be compressed and packaged into payloads. 
Intermediate nodes relay these payloads to the destination. We 
can use different DTN routing approaches to relay the payload. 
In this work, we use SNW routing as it allows setting the 
maximum replica count of a payload at the source. 

The primary contribution of our work is continuous adaptive 
streaming of video over OppNets, using end-to-end mechanisms 
only. Similar to additive-increase and multiplicative decrease of 
TCP, only the source and destination nodes implement the 
adaptation, without requiring any changes on intermediate 
nodes. 

A. Scalable video coding and payload generation 

In reliable networks with round-trip delays below a second, 
the source can get feedback from the receiver and adapt its 
encoder settings to target an optimal bit-rate. For OppNets, the 
acknowledgment may come after several hours of delay, or it 
may be lost entirely. Hence, we cannot utilize such schemes. 
Scalable Video Coding (SVC) and Multi-Description Coding 
(MDC)[6] provide an alternative for such scenarios. The source 
can create payloads of varying bit-rate and quality. In MDC, the 
payloads carry mutually overlapping information for 



redundancy. This information overlap cannot be controlled 
externally, making it unsuitable for adaptive transmission. For 
our work, SVC is a better fit since it allows external redundancy 
control. An in-depth discussion of SVC is out of the scope of 
this paper and [3] provides a much more comprehensive 
overview of the same.  

Payload can be mapped at each network adaptation layer unit 
(NALU) or SVC layers of video chunks of few seconds each can 
be mapped to payload. NALU level mapping of payload requires 
the network elements to be aware of the media flow[5]. In our 
work, we do not expect any support from intermediate nodes, 
hence the source (SVC encoder) compresses a chunk of captured 
video (of a few seconds each) into a base layer (BL) and multiple 
enhancement layers (EL). Only after receiving the base layer, 
the content from the enhancement layer can be used to improve 
the quality of the video further. The receiver necessarily requires 
the BL to decode the video. On receiving subsequent 
enhancement layers, the decoder can increase resolution, 
improve frame rate, increase colour depth and reduce 
quantization loss. For a particular chunk, if an intermediate EL 
is missing, higher ELs cannot be decoded. Let us consider the 
example, where the source encodes and transmits a segment of 
video using SVC layers as BL and three ELs (labelled as EL1, 
EL2, and EL3). If BL is not received, the complete segment 
cannot be decoded. In another instance, if only BL, EL2 and EL3 
are received, the decoder can only provide the output to the 
quality carried in BL. In this case, EL1 is missing, and hence, 
we cannot use EL2 and EL3. 

B. Routing in OppNets 

Reference [7] provides a detailed description of various 
routing protocols for routing in Delay Tolerant Networks. At 
one extreme, we have direct-delivery where the source should 
meet the destination to deliver the payload. Direct-delivery has 
large delays, and the network may suffer from delivery failures. 
Nevertheless, this approach has the lowest network utilization 
and the least demand on storage space. On the other extreme, we 
have the epidemic routing protocol where the payload is shared 
with all nodes. When the network is lightly loaded, epidemic 
routing will provide the best performance on delivery rates with 
minimal delay. However, epidemic routing has the highest 
network resource utilization as it shares a copy with all the nodes 
in the network. It also has high overheads on storage of bundles. 
Network congestion may occur when large or frequently 
generated payloads added. 

Spray-and-Wait [4] provides a balance between direct 
delivery and epidemic routing. The source node can set the max 
upper bound to the number of replicas (L) that can be created. If 
L equals one, SNW behaves similarly to the direct delivery 
protocol. If the initial value of L is more than the number of 
nodes, it behaves similarly to epidemic routing. The Spray phase 
is the initial phase where the payload is relayed to the other 
nodes. In this phase, the copy counts are adjusted on both nodes 
when a payload is transferred. For Binary-SNW routing protocol 
used in this work, the relaying node drops the copy count of a 
payload by half after transferring it. A payload on a node enters 
the Wait phase when it has a copy count of one. In the Wait 
phase, the payload cannot be relayed to any node except for the 
destination. 

III. ADAPTIVE VIDEO TRANSMISSION IN OPPNETS 

In the beginning, the source transmits all the SVC layers. 
The BL is given the highest value for L compared to all other 
layers. Similar to Klaghstan [5], higher enhancement layers have 
a lower value of L. The destination sends acknowledgments for 
all the payloads that it receives. 

In our experiments, we have first implemented temporal 
scaling of five layers, before bringing in spatial and quality 
scaling. This implies we have first layer as BL, followed by 
EL1-EL4 as temporal enhancements. EL5-EL9 improve the 
spatial quality at different temporal layers. For creating a video 
of consistent spatial quality, we should have either all of the 
layers between EL5 to EL9 or none of them [5]. We have also 
experimented with other sequence of SVC layers (e.g. BL 
followed by EL1 at higher resolution, and EL2-EL6 bringing in 
temporal scalability). Because of space constraints, we are only 
discussing adaptation for ten layers BL, EL1, EL2, EL3, EL4 
and EL5-EL9 scenario. 

Algorithm 1 implements adaptive transmission. Delay-
Target (DT) is a deployment specific setting. It is the intended 
delay from the time of the capture of a video segment at the 
source, to the time for decode and playback of the segment at 
the destination. Burst-Gap is the time gap between each segment 
capture. Note that AdaptiveRecordAndTransmit is invoked at 
the source for each segment. MxL is the maximum number of 
SVC layers that the encoder produces.  

For instance, in a sparse network with an average delivery 
delay is of 8 hours, DT may be set to 12-24 hours and burst-gap 
to 5 minutes. Since the network reacts with a significant lag, we 
also experimented by changing dtMult in line 3 of Algorithm 1 
for values of 1, 2 and 4 during simulation runs. Values for 
Additive Increase (AI) as 0.003 and Multiplicative Decrease 
(MD) as 0.01 are determined through simulations. 

SVCEncodeAndTransmit encodes the raw video and only 
transmits the SVC layers up to numLyrs2Send. Each layer is 
transmitted as a separate payload. The time-to-live for each 

Algorithm 1: AdaptiveRecordAndTransmit 

Initialize: burstId←0, MxL←10, factor ←1 

1. begin  

2. burstId← burstId +1 

3. dTAwayId ← burstId – dtMult × DT/burstGap 

4. if (ackReceived(dTAwayId)) then 

5.           factor ← factor + numAcksAddIncr 

6. else  

7.           factor ← factor × MultDecr 

8. if (factor > 1) then  

9.           factor ← 1 

10. if (factor < 1/MxL) then  

11.           factor ← 1/MxL 

12. numLyrs2Send← MxL * factor 

13. if (numLyrs2Send > 5 AND numLyrs2Send < 10) then  

14.           numLyrs2Send ←5 

15. SVCEncodeAndTransmit(numLyrs2Send) 

16. end  



payload is set to twice the delay-target to ensure that the 
payloads do not continue to occupy buffer forever. 

IV. SIMULATION RESULTS 

Opportunistic Network Environment (ONE) [8] was used to 
simulate the video transmission. We simulated fifty pedestrian 
nodes based on the Random Waypoint [8] movement model of 

ONE. DT is set to three hours and burst-gap to 5 minutes. To 
simulate the specifications of a smartphone’s Bluetooth radio, 
we used a radio range of 10m with a network speed of 250 
KB/sec and a buffer space of 50 MB in these simulations. The 
video source had 500 MB buffer space. The time-to-live for 
payloads is set to six hours and payload size is determined using 
SHM (12.4 from https://hevc.hhi.fraunhofer.de/svn/). 

 
Fig. 1 Simulation results for dtMult as two 

 

 
Fig. 2 Simulation results for varying dtMult 
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Fig. 3 Enhancement layers for dtMult as two 
   

The video payload used in the simulation is compressed 
using SHM (ver. 12.4) into payloads corresponding to BL, EL1, 
EL2, till EL9 for a total of ten payloads for each video segment 
captured. The simulation involved five runs with different seeds 
to ensure that there is no specific bias in the simulation. 

Fig. 1 presents the results for various metrics as 
multiplicative decrease and additive increase values are varied 
for adaptation, using acknowledgment for payload generated 
two DT ago. For all the metrics, it is observed that the MD 
values above 0.003 and AI values below 0.01 provide relatively 
good results.  Fig. 1 (a) shows that count of delivered payloads 
has two pronounce peaks at AI=0.003 / MD=0.01 and AI=0.001 
/ MD = 0.003 respectively. The delays (Fig. 1 (c)) and 
percentage of delivered payloads (Fig. 1 (d)) have best values 
for MD greater than 0.003 and AI lower than 0.003. In this range 
the overheads peak (Fig. 1 (b)). Despite the high overheads, 
these results show that AI around 0.003 and MD as 0.01 and its 
vicinity are good area to operate in these scenarios. 

Note that when SVC is not used only 82 segments of video 
(of the 1000 that were transmitted) reached the destination. For 
low values of MD, SVC adaptation is poorer than that of non-
SVC transmission. As MD value increases to 0.003 and higher, 
adaptive transmission does better than non-SVC transmission. 
Detailed analysis showed that at MD of 0.3, almost 600 bursts 
are decoded, though most of them are at base layer.  

Fig. 2 a-c shows the number of delivered bursts with dtMult 
of one, two and four. It shows that for the simulation scenario, 
dtMult of four (peak of 882) does not provide any appreciably 
improvement when compared with dtMult of two (peak of 885). 
dtMult of one had a significantly poor result (peak of 728). The 
best result of dtMult as two corresponds to round trip time for 
the communication. The mobility model is synthetic in nature 
with nodes randomly walking along predetermined routes. The 
randomness brings in symmetry for round-trip time 
computation.  

Fig. 3 a-c shows the first three enhancement layers for 
dtMult as two. The peaks for first enhancement layer 
corresponds to 736 segments of video, second enhancement 

layer as 553 segments and third enhancement layer as 400 
segments. These values are gain for AI as 0.003 and MD as 
0.03/0.01. 

Note that the simulation matches with a disaster response 
scenario where the activity is continued on a 24x7 basis. In case 
other mobility model like a working day scenario or traces from 
real world are used, we observe that the dtMult values closer to 
twenty-four hours provide the best results. For brevity, this 
discussion is not included in the current work. 

V. PROOF OF CONCEPT 

VECTORS [9], an app developed by the author’s team in the 
past that creates a DTN on Android devices is extended for this 
work. Prior release implemented the video capture and encoding 
logic to create the payload using an SVC encoding library, 
SHM, on Linux based machines. SHM is cross-compiled to run 
on Android as a native application that generates a total of 10 
spatial and temporal layers for the payload. When compared to 
[9], present work simplifies the adaptation logic and runs 
entirely on Android devices, eliminating the use of Linux 
computers. 

 

 
Fig. 4 Screen capture for the destination node 
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Fig. 5 Screen capture for the source node 

To simulate a construction site with no infrastructural 
support scenario, an experimental deployment was set up on a 
construction site in BITS Pilani, Hyderabad Campus consisting 
of four Android devices. One device was kept static, acting as 
the source node to record the area of construction and the 
destination node was placed at the site-management office, both 
of which were running the OVS-SVC app. First device captured 
video and generated the payload. The second device, received 
the payload and tabulated the received payload statistics. The 
construction site employees carried the remaining two devices 
running VECTORS [9] that relayed the payload. Since the 
employees at the construction site do not work in the nights, we 
used DT as 12 hours and dtMult of 2. TTL was set to 24 hours. 

Fig. 4 shows the screenshots of the OVS-SVC app for the 
destination, and Fig. 5 for the source. L0T1 in Fig. 4 is the 
equivalent of the BL in the payload generated. 

VI. CONCLUSION AND FUTURE WORK 

Through simulations we experimented with AIMD based 
adaptation with varying periods to check for acknowledgments. 
As compared to non-adaptive and non-SVC based 
transmissions, Adaptive SVC provides significant 
improvements with correct choice of AI and MD values. The 
decodable bursts were found to be best when acknowledgement 
for payloads generated with twice the delay-target are 
considered. In future, we plan to experiment with other 
adaptation algorithms and different mobility scenarios, 
including real-world traces. We are also extending this work to 
measure fairness for multiple such video streams. Priority of 
video streams is another area to be explored.  

We also demonstrated the adaptive streaming of video 
chunks using scalable video coding. As compared to our prior 
work (VECTORS) which utilized both Linux computers and 
Android devices, this solution only utilizes Android devices. 
Since Android devices are much more affordable and portable, 
our work would make opportunistic video streaming possible for 
a greater number of applications. 

As SHM is a software encoder, the present system can only 
transmit 30-second videos at four frames per second. This is 
compressed into a set of temporal enhancement layers followed 
by spatial enhancement layers. Future extension of this work 
will explore hardware-compression and dynamic adaptation 
using variable frame rates. The team also intends to create an 
Android application ecosystem for deploying such apps to 
domain-specific requirements – e.g., event management, 
policing, disaster response, wildlife monitoring, etc. 
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